Компромисс между скоростью и выносливостью. Методика развития скоростной выносливости Тесты для определения уровня выносливости

Скоростная выносливость является важным физическим качеством любого бегуна на короткие дистанции. Лишь при развитии этого качества можно рассчитывать на медали высшей пробы. Без хорошей выносливости путь к спортивным достижениям может закрыться навсегда.

Что такое скоростная выносливость

Рассмотрим подробнее, что такое скоростная выносливость . Это поддержание высокой скорости передвижения максимально длительное время. Как правило, её улучшение необходимо для быстрого бега, ходьбы, езды на велосипеде и других циклических нагрузок.

Развитие выносливости невозможно, если во время тренировки нет мышечного утомления. Отметим, что тренировка выносливости всегда предполагает работу на пределе физических возможностей . При отсутствии существенных мышечных нагрузок эффекта от занятий видно не будет.

Виды скоростной выносливости

Скоростная выносливость разделяется по мощности работы на следующие разновидности.

    • Умеренная . Такая мощность позволяет мышцам практически не потреблять кислород. Благодаря этому спортсмен может преодолевать большие дистанции на относительно высокой скорости. Развитие умеренной мощности необходимо для всех циклических видов спорта (бега, гребли, лыжного спорта и т.д.).
    • Большая . Работая на большой мощности спортсмен, как правило, «выдыхается» в промежутке между 2-ой и 10-й минутами. Мышцы при этом функционируют как в кислородном, так и бескислородном режиме. Тренировка этого типа мощности подходит для велосипедистов и гребцов, так как в этих дисциплинах основную работу выполняют одна-две мышечные группы.
    • Субмаксимальная . Мышечная мощность этого вида выносливости достигается при работе с 90-95% от максимальной интенсивности. При этом энергия в мышцах полностью растрачивается в течение 1-3 минут работы. Количество энергии в мышцах ограничено, поскольку большая её часть расходуется из внутренних резервов организма. Субмаксимальная мощность тренируется в основном бегунами и пловцами для преодоления коротких дистанций.
    • Максимальная . Это предельно допустимая мощность, используемая для развития взрывной силы. При этом мышечная энергия расходуется уже спустя 10-40 секунд после начала нагрузок. Для обеспечения мышц энергией используются практически все бескислородные источники питания организма.

Развитие скоростной выносливости требует выполнения циклических движений. Обычно для этого используются беговые упражнения, поскольку они очень эффективны для тренировки всех видов выносливости.

Скорость движения в беговых упражнениях должна варьироваться от средней к максимально возможной. Принцип вариативности нагрузок поможет быстрее развить скоростные качества спортсмена.

Кроме изменения скорости применяются и различные методики тренировок . Рассмотрим основные из них на примере беговых упражнений.

  • Равномерный метод – непрерывный бег в течение 15-90 минут с умеренной и одинаковой скоростью.
  • Повторный метод – заключается в повторении забега на одном и том же отрезке. В этом случае спортсмен пробегает короткие дистанции на скорость. После каждого забега необходим отдых от 5 до 15 минут до полного восстановления пульса.
  • Интервальный метод – схож с повторным методом. Однако здесь для забегов не требуется полного восстановления пульса до состояния покоя. Второй и последующий забеги проводятся сразу после снижения пульса до 120-140 уд/мин.
  • Переменный метод – предполагает изменение скорости на одной общей дистанции. К примеру, каждые 400 метров спортсмен пробегает с разной скоростью. Такая методика позволяет развить мощность и скоростные качества атлета.

Упражнения на скоростную выносливость

Среди упражнений на скоростную выносливость выделим самые популярные.

  • Бег . Сочетание забегов на длинные и короткие дистанции с разной скоростью помогут быстро развить мышечную выносливость.
  • Упражнение «Бурпи» . Техника выполнения: из положения стоя подпрыгнуть и одновременно с этим сделать хлопок ладонями над головой. После чего приземлиться и опуститься в положение лёжа. Затем сразу отжаться и встать в исходную позицию. Это упражнение необходимо проделать минимум 10 раз. По мере тренированности количество повторений в подходе следует постепенно повышать.
  • Прыжки со скакалкой . Во время выполнения этого упражнения старайтесь менять темп и скорость прыжков. Такая вариативность значительно повысит эффективность занятия.
  • Челночный бег . Знакомый нам с уроков физкультуры челночный бег отлично развивает выносливость. Цель этого упражнения состоит в коротких забегах в обе стороны отрезка дистанции. Оптимальная длина отрезка для челночного бега составляет 30 метров. Условием прохождения этого упражнения считается поочерёдное касание рукой стартовой и финишной линии.
  • Игровые виды спорта . Футбол, баскетбол, волейбол и теннис хорошо тренируют выносливость спортсмена. За счёт постоянно меняющейся нагрузки эти игры могут заменить множество упражнений на развитие выносливости.
  • Тренировка с боксёрской грушей . Отличное упражнение для повышения выносливости. Отработка ударов по груше происходит по следующей схеме: 30 секунд удары наносятся с медленной скоростью, после чего 10 секунд – с быстрой. Таких циклов за одно занятие должно быть от 10 до 100.
  • Выталкивание штанги из полуприседа . Из положения стоя, держа штангу на уровне плеч, в быстром темпе необходимо вытолкнуть штангу над головой. Количество повторений в подходе от 30 до 50. Вес штанги — 20-30% от рабочего максимума в жиме стоя.

«Элтон Форте»для развития выносливости

Ни одна победа в спорте немыслима без развития выносливости . Низкая выносливость сразу же проявится быстрой утомляемостью и одышкой на тренировках. А это вряд ли приведёт спортсмена к заоблачным рекордам.

Хотите быть сильным и чувствовать постоянный прилив сил? Тренируйте свою выносливость. Причём вне зависимости от того, занимаетесь ли вы спортом профессионально или просто посещаете спортзал для поддержания фигуры. Ведь это качество пригодится не только в спорте, но и в обычной жизни.

Чтобы развить максимальную выносливость обратите внимание на натуральную биодобавку . В её состав входит корень элеутерококка , являющийся мощным растительным адаптогеном, укрепляющим наш организм. Корень этого растения содержит элеутерозиды, действие которых значительно повышает выносливость человека .

Спортсмены-вегетарианцы сегодня мало кого удивляют. Многие звезды спорта осознанно выбирают такой путь и остаются только в выигрыше. Куда более удивителен тот факт, что подобная практика существовала задолго до того, как вегетарианство стало мейнстримом. Великие атлеты прошлого принципиально отказывались от мяса, но при этом продолжали бить рекорд за рекордом. Кто же эти герои, и в чем…

Железный Мир. №12.2013г.

Мы продолжаем цикл наших бесед с профессором Виктором Николаевичем Селуяновым . В предыдущих беседах мы говорили о методах увеличения мышечной массы - гиперплазии миофибрилл в различных типах мышечных волокнах. Сегодня мы поговорим о развитии выносливости. Особый интерес, данный материал будет представлять для представителей армрестлинга, силового экстрима, народного и русского жима. Мы уже разбирали подробно методику тренировок окислительных мышечных волокон. Безусловно, тренировки по этой системе увеличат выносливость. Проблема в том, что у представителей вышеназванных силовых видов спорта доля окислительных волокон в мышечной композиции не так велика. И их основная работа должна быть направлена на повышение аэробных возможностей гликолитических и промежуточных мышечных волокон. И это можно сделать! Значительно увеличить выносливость этих типов волокон без потери силовых и скоростных показателей.

Железный Мир: Виктор Николаевич, как я знаю, вы отрицаете принятую сейчас классификацию выносливости, и считаете что термины общая выносливость, силовая выносливость, скоростная выносливость морально устарели

Виктор Селуянов: Названные вами категории выносливости понятия педагогические. Люди наблюдали за спортсменами во время соревнований, ученые наблюдали за спортсменами и делали свои выводы на основе увиденного, то есть на основе визуального наблюдения, не подкрепленного глубокими теоретическими (биологическими) исследованиями.

Если это происходило в спринте, например в беге на 100 или 200 метровой дистанции, когда на финише один из бегунов убегал от других, говорят о его скоростной выносливости. Если в беге на средние или дальние дистанции один из бегунов постоянно по всей дистанции увеличивал разрыв между собой и соперниками, говорят о общей или специальной выносливости, а если дело происходит на соревнованиях по гиревому спорту, то говорили о силовой выносливости. Кто что видит тот так и пытается придумать способность для «объяснения» победы чемпиона. А смысл явления, в чем чемпион превосходит соперников при этом так и не раскрывается. На этом педагогическая наука заканчивается, и для того чтобы разобраться в сути явления надо создавать совсем другую науку, науку которая строится на биологическом основании. Мы сейчас строим такую науку. Она называется спортивная адаптология. В рамках этой науки мы заглядываем в мышцу, на основе всей совокупности данных биологических наук (анатомия, гистология, биохимия, физиология и др.). Здесь, в мышечных волокнах можно увидеть элементы, которые называются органеллы. Специфическая органелла мышечного волокна - миофибриллы, они сокращаются и этим самым создают скорость и силу сокращения мышцы. И совершенно очевидно, что если будет расти количество миофибрилл, то будет расти сила, а если вес, который нужно двигать не меняется, то с ростом силы будет расти скорость. Об этом писал еще Арчибальт Хилл в первой половине прошлого века, он обнаружил закон «сила-скорость». Но при этом есть некие специфические особенности. Из двух человек одинаковой силы один способен более быстро передвигать грузы и метать тяжелые предметы, поскольку есть быстрые и медленные мышечные волокна. В этом случае ясно, что те, у кого более быстрые волокна, то есть актино-миозиновые мостики быстрее образуются и быстрее распадаются, те имеют значительное преимущество в скорости при прочих равных условиях.

Но если речь идет о выносливости, то она зависит практически только от количества митохондрий в работающей мышце. Напомню, что в митохондриях глюкоза полностью расщепляется до воды и углекислого газа, в то время как вне митохондрий она расщепляется до молочной кислоты. Повышение концентрации ионов водорода в мышцах и является причиной утомления. Если миофибриллы в мышечных волокнах полностью окружены митохондриями, то такие волокна практически не утомляются, они называются окислительными. Они могут работать, не снижая работоспособности до тех пор, пока есть запас энергии в виде гликогена.

В ОМВ митохондрии находятся на предельном уровне развития. В два слоя митохондрии не могут окружать миофибриллу. Поэтому окислительные мышечные волокна не поддаются развитию в плане увеличения выносливости.

Надо заметить, что митохондрии определяют выносливость в любом виде упражнений, спринтерских, силовых или стайерских. Однако, запас силы - отношение поднимаемого веса к предельному, также влияет на продолжительность выполнения упражнения, длительность которых находится в пределах 1-2 мин.

ЖМ: А если ОМВ гипертрофировать?

ВС: А вот если их гипертрофировать, то есть если в мышечном волокне будут добавляться новые миофибриллы, вокруг новых миофибрилл будут появляться митохондрии, то тогда аэробные возможности будут расти. В большинстве случаев необходимо добавить митохондрии в более высокопороговые МВ, но тренеры этого не понимают и пытаются создать так называемую общую выносливость, по педагогической терминологии, и начинают бегать в пол силы длительное время при малых величинах мышечного закисления. То есть работают с ОМВ, которые и так уже на пределе развития выносливости. Поэтому толку от таких тренировок практически нет.

ЖМ: В своих работах вы ставите на первый план развитие локальной выносливости. Известно, что с конца прошлого века борются две теории мышечного утомления: гуморально-локалистическая (или периферическая) и центрально-нервная. И большинство отечественных физиологов придерживались центрально-нервной теории. Достаточно вспомнить тот известный оригинальный эксперимент И. М. Сеченова, в котором испытуемый, при сгибании указательного пальца в заданном ритме, поднимал груз на определенную высоту. В результате развивающегося утомления высота подъема груза через некоторое время уменьшалась, а затем наступал момент, когда испытуемый совсем не мог поднять груз. При этом он чувствовал сильное утомление мышц работавшего пальца и, естественно, считал, что утомление развилось в них. Далее, в момент, когда он не мог поднять груз, через мышцы работавшего пальца пропускали электрический ток, который вызывал сокращение мышц в том же ритме, что приводило к поднятию груза. Соответственно был сделан вывод, что в первую очередь утомляются нервные клетки коры головного мозга. Как Вы можете это прокомментировать?

ВС: Вовремена И.М.Сеченовафизиологи не знали закона рекрутирования мышечных волокон и биохимических факторов вызывающих утомление мышц. Если поднимать груз с сопротивлением менее 40%ПМ, при низком проценте ОМВ, то через 2-4 мин мышца закисляется и поднимать груз становится очень трудно. Однако, высокопороговые МВ человек произвольно активировать не умеет, поэтому с помощью электростимуляции можно вызвать активацию высокопороговых двигательных единиц (мышечных волокон), которые продолжат выполнять заданное упражнение. При такой интерпретации нет места утомлению в ЦНС, утомление возникает в МВ.

ЖМ: Насколько, по-Вашему, необходима выносливость в силовых видах спорта?

ВС: Даже в таких скоростно-силовых видах спорта, как тяжелая атлетика, когда отдых между подходами составляет 2-3-5 минут, возникает проблема с восстановлением мышц. А они могут восстановиться только в том случае если молочная кислота уходит. А она частично уходит в кровь, а частично попадает в соседние мышечные волокна. Либо в тех же МВ попадает в митохондрии и превращается в воду. Так вот, если нет собственных митохондрий, то процессы выхода молочной кислоты в кровь или в соседние мышечные волокна достаточно длительны и спортсмен долго восстанавливается. Поэтому правильно подготовленный спортсмен-штангист, для того чтобы показывать стабильные результаты должен иметь в своих гликолитических волокнах митохондрии. Особенно это актуально на высшем спортивном уровне, когда в финале соревнований два или один спортсмена остаются со штангой и выходят на свой следующий подход практически через 3 минуты. Иногда они хитрят, набрасывают лишние полкило, теперь это возможно, и благодаря этому выигрывают себе дополнительно несколько минут отдыха. Но все равно, если бы у них было достаточно митохондрий в ПМВ и ГМВ, процесс шел бы значительно быстрее.

ЖМ: Ситуация знакомая. В армспорте с введением нового формата поединков - армфайтов спортсменам приходится бороться друг с другом три и более раз с отдыхом в три минуты. И зачастую побеждает не самый сильный, а самый выносливый. Но в армрестлинге затяжные поединки и спортсмены сильно закисляются. А почему тяжелоатлеты закисляются во время соревновательных движений? Ведь длительность упражнения не превышает несколько секунд. Вроде бы недостаточно для образования молочной кислоты.

ВС: Если представить себе, что в момент старта у борца -армрестлинга включаются 80-90% всех двигательных единиц, то в них тратится АТФ (2с) и КрФ (10-15с), затем в ОМВ начинается ресинтез ФТФ и КрФ с помощью окислительного фосфорилирования (кислород берется из миоглобина), а в ГМВ ресинтез идет с помощью анаэробного гликолиза с образованием лактата и ионов водорода. При любой длительности напряжения ГМВ в них в процессе отдыха будет накапливаться лактат и ионы водорода, количество его будет зависеть от продолжительности напряжения. Однако, если в ГМВ появятся митохондрии, то они в период отдыха смогут поглотить ионы водорода (превращаются в воду) , т.е. исчезнет фактор, приводящий к утомлению ГМВ.

ЖМ: Но ведь попытка в тяжелой атлетике длится менее 10 сек если не считать настроя - в рывке 3-4 сек, в толчке за счет паузы в положении штанги на груди дольше. Можно более подробно, каким образом происходит накопление ионов водорода при неистраченном запасе КрФ?

ВС: В соревновательных упражнениях в тяжелой атлетике тратится небольшая доля АТФ во всех основных активных мышцах (ног, спины), ресинтез запаса АТФ идет за счет КрФ, а ресинтез КрФ в ГМВ идет за счет АТФ, которые синтезируются в ходе анаэробного гликолиза с образованием лактата и ионов водорода. Ионы водорода выходят из ГМВ целый час, а если в ГМВ образуется больше митохондрий, то процесс удаления ионов водорода ускоряется. Поэтому невыносливые штангисты могут сделать повторный подход к околопредельным весам не раньше чем через 10 мин активного отдыха. Выносливые штангисты могут поднимать предельные веса через 3-5 мин.

Напомню, что увеличение концентрации ионов водорода в МВ препятствует образованию актин-миозиновых мостиков, т.е. снижению силы и скорости сокращения мышцы.

ЖМ: Расскажите о методике тренировок направленных на увеличение количества митохондрий в ГМВ и ПМВ.

ВС: Методы тренировок вытекают непосредственно из физиологии. Во-первых, по закону физиологии, чтобы тренировать ГМВ их надо включить в работу. Отсюда сразу вытекают требования к интенсивности работы, она должна быть в районе 80% от максимума. При такой нагрузке включаются практически все двигательные единицы. Во-вторых, необходимо чтобы работа продолжалась достаточное время для того, чтобы возбудить те самые механизмы, которые будут потом обеспечивать гипертрофию митохондрий. Необходимо легкое закисление, появление свободного креатина, повышение концентрации анаболических гормонов в крови и МВ. Мы рекомендуем делать 10 повторений в подходе, если спортсмен не может выполнить 10 повторений, то вес снижается, но психическое напряжение остается тем же. Спортсмен должен выполнять каждое движение более интенсивно. В этом случае рекрутируются все ДЕ (МВ), а степень накопления свободного креатина и ионов водорода становятся оптимальными для стимулирования транскрипции - считывания информации с ДНК. Во время такого упражнения тратится не более 30% АТФ и КрФ, поэтому во время 2 мин восстановления накопление ионов водорода и лактата не превысит критического уровня, разрушающего митохондрии. Увеличение количества подходов приводит к постепенному накоплению гормонов в крови и активной мышечной ткани, поэтому 10 подходов обеспечивает требуемую концентрацию гормонов в МВ. Кому не терпится, можно выполнить 20 подходов в одной тренировке к одной мышечной группе. Большее количество подходов может привести к полному разрушению АТФ и КрФ в МВ, а это задержит процесс восстановления на несколько суток. Следовательно, методика в кратком виде может быть представлена так.

Интенсивность сокращения мышц - 60-90%,

Продолжительность 20-30с (10 повторений),

Интервал отдыха - 60-120с,

Количество подходов 10-20 раз,

Количество тренировок в неделю - 3-7 раз.

ЖМ: То есть в жиме лежа, спортсмену, имеющему лучший результат 100 кг надо сделать со штангой 80 кг 10 повторений? Но это тяжелая силовая работа и не каждому по силам

ВС: Тяжелая. Но есть выход из ситуации. Мышечные волокна рекрутируются не от веса как такового, а от той интенсивности, с которой ты прикладываешь силу. Поэтому вес надо сбавить до 60-50, и даже 40 кг, а приложить силу соответствующую 80% психического напряжения.

ЖМ: Увеличить скорость выполнения движения?

ВС: Да совершенно верно. Но не так конечно, чтобы снаряд разогнался и убил кого-нибудь. Количество повторений, как я говорил не меньше 10-и, только тогда КрФ истратится. Поэтому на начальном этапе сложно поймать необходимую интенсивность, которую необходимо прикладывать к снаряду и определить вес отягощения. Если после выполнения упражнения спортсмен чувствует сильное закисление мышц, да еще накапливающиеся от подхода к подходу, то это, в корне неправильно. Потому что главный принцип - не закислиться. То есть субъективное ощущение после этой серии - легкое локальное утомление.

ЖМ: Темп должен быть высокий?

ВС: Нет, при высоком темпе большая вероятность чрезмерного закисления мышц. Надо делать в таком режиме: дёрнул, расслабился, подождал немножко, потом опять дёрнул.… Тогда будет правильно.

ЖМ: А количество подходов в серии?

ВС: От однократно подхода механизмы, обеспечивающие гипертрофию митохондрий будут возбуждаться слабо. Надо истратить часть КФ, поэтому опыт показывает, что надо сделать хотя бы 10 подходов в серии для накопления гормонов в крови и активных МВ.

ЖМ: 10 х 10?! Но для силовых атлетов, привыкших в одном упражнении делать 3-5 подходов, это будет развивающей тренировкой. Возможно уменьшение количества подходов?

ВС: Уменьшать не надо, поскольку на самом деле эти упражнения очень легкие. В циклических видах спорта упертые спортсмены доводят число серий до 40-50 в одной тренировке.

ЖМ: Сколько раз в неделю нужно выполнять подобную серию?

ВС: Эти упражнения не приводят к сильному закислению мышц, соответственно нет повреждающего эффекта. Митохондрии строятся 3-5 дней так что эти тренировки вполне можно выполнять один-два раза в день ежедневно. Желательно в серию объединять 2-3 упражнения. Например, отжимание от пола, подтягивание на низкой перекладине и приседания. И так по кругу без остановки 10 подходов. Отдых - время перехода от станции к станции. Желательно время отдыха держать в пределах 60-120с.

ЖМ: Получается, поработав дважды в день по этой методике на протяжении 4 дней, я уже должен почувствовать рост выносливости, ведь образовались митохондрии? И каждые 4 дня ощущать постоянный прогресс?

ВС: В принципе да, но рост митохондрий продолжается примерно месяц. То есть за месяц можно в два раза увеличить количество митохондрий.

ЖМ: То есть я, достаточно подготовленный в силовом плане спортсмен, могу за 2-3 месяца полностью подготовить свой митохондриальный аппарат?

ВС: Да. Но надо отметить, что выносливость в педагогическом смысле растет вообще, где-то непонятно, а в биологическом смысле она растет только там, где ее тренируют.

ЖМ: Этот режим работы 10Х10 воздействует в большей степени на митохондриальный аппарат ПМВ или ГМВ?

ВС: Все зависит от интенсивности. Если она около 80% , то будут тренироваться и промежуточные и гликолитические МВ. А если интенсивность сбавить, то будут тренироваться в основном ПМВ. Есть одна особенность. У людей поднимающих тяжести аэробные возможности могут быть очень низкими. Недавно мы тестировали одного представителя силового экстрима, так у него аэробный порог и на руках и на ногах был ниже, чем у человека с весом 60 кг. А он весил 150 кг.

ЖМ: Странно.Все таки стронгменам приходится бегать с большими грузами поднимать ряд камней…

ВС: Так вот он со своими товарищами может соперничать только в однократных подъемах. А после поднятия 3-х камней он уже 4-й поднять не может. Все из-за крайне незначительного кол-ва митохондрий в ПМВ и ГМВ. Мы ему составили ряд рекомендаций, одна из которых работать с весом 50% от максимума в режиме 10х10.

ЖМ: Совместимы ли силовые тренировки с тренировкой митохондрий?

ВС: Скорость наращивания силы в окислительных волокнах будет тормозиться, а в гликолитических будет стоять на месте. Большие объемы работы мешают пластическим процессам. Именно это обстоятельство заставляет спортсменов сначала наращивать силу, а затем на новом морфологическом уровне увеличивают выносливость (набирают митохондрии). Замечу, вся практика спорта высших достижений требует выполнять нагрузки наоборот - сначала выносливость, а затем сила. Это в корне неверно.

ЖМ: Как же должна выглядеть подготовка к соревнованиям?

ВС: Вы весь подготовительный период должны наращиваете силу. Потом подходит период подготовки к соревнованиям. Вы уже силу набрали, но митохондрий не хватает. В течение полутора месяцев добираете митохондрии и выходите на пик спортивной формы. Выступаете в соревнованиях. В период выступления в соревнованиях трудно удержать силу и выносливость, поэтому через полтора месяца все начинает падать. Это означает, что пришло время для нового цикла подготовки - «сила - выносливость - соревнования».

ЖМ: То есть идеальный вариант подготовки к соревнованиям это в последние полтора месяца убрать силовую работу и готовить только митохондрии?

ВС: Ну не совсем убрать Тонизирующие тренировки надо делать. Сила не вырастит, но поддерживать ее надо. И работать с большими весами на 1-3 повторения. А в армрестлинге, например, дополнительно тренировать стартовое движение. Но акцент надо делать на развитии специальной выносливости - накапливать митохондрии в ГМВ.


При тестировании выносливости используются показатели частоты сердечных сокращений и кровяного давления. Величина и характер изме-нений этих показателей свидетельствуют о состоянии сердечно-сосудистой и дыхательной систем, а это, в свою очередь, служит индикатором общей выносливости организма.

Для оценки уровня выносливости широко применяются следующие тесты:

1. 12-минутный беговой тест Купера, испытуемый должен пробежать как можно большее расстояние за 12 минут.

2.6 -минутный бег: процедура тестирования такая же, как и для 12-минут-ного бегового теста. Используется для оценки выносливости детей 7-17 лет.

3. Гарвардский степ - тест. 5-минутное восхождение на ступень высотой 50 см. Фиксируется частота сердечных сокращений после нагрузки и её вос-становление.

4. Бег или ходьба на различные дистанции - в зависимости от возраста (600-1000 м-дети 7-10 лет, 2000-3000 м - И лет и старше).

Одним из основных критериев выносливости является время, в течение которого человек способен поддерживать заданную интен-сивность деятельности. На основе этого критерия разработаны пря-мой и косвенный способы измерения выносливости. При прямом способе испытуемому предлагают выполнять какое-либо задание (например, бег) с заданной интенсивностью (60, 70, 80 или 90% от максимальной скорости). Сигналом для прекращения теста яв-ляется начало снижения скорости выполнения данного задания. Однако на практике педагоги по физической культуре и спорту прямым способом пользуются редко, поскольку сначала нужно определить максимальные скоростные возможности испытуемых (по бегу на 20 или 30 м с ходу), затем вычислить для каждого из них заданную скорость и только после этого приступать к тестированию.

В практике физического воспитания в основном применяется кос-венный способ, когда выносливость занимающихся определяется по времени преодоления ими какой-либо достаточно длинной дистан-ции. Так, например, для учащихся младших классов длина дистан-ции обычно составляет 600--800 м; средних классов -- 1000--1500 м; старших классов -- 2000--3000 м. Используются также тесты с фик-сированной длительностью бега -- 6 или 12 мин. В этом случае оценивается расстояние, преодоленное за данное время.

В спорте выносливость может измеряться и с помощью других групп тестов: неспецифических (по их результатам оценивают потенциальные возможности спортсменов эффективно тренироваться или соревноваться в условиях нарастающего утомления) и специфических (результаты этих тестов указывают на степень реализации этих потенциальных возможностей).

К неспецифическим тестам определения выносливости относят: 1) бег на тредбане; 2) педалирование на велоэргометре; 3) степ-тест. Во время выполнения теста измеряются как эргометрические (время, объем и интенсивность выполнения заданий), так и фи-зиологические показатели (максимальное потребление кислорода -- МПК, частота сердечных сокращений -- ЧСС, порог анаэробного обмена -- ПАНО и т.п.).

Специфическими считают такие тесты, структура выполнен которых близка к соревновательной. С помощью специфически тестов измеряют выносливость при выполнении определение деятельности, например в плавании, лыжных гонках, спортивных играх, единоборствах, гимнастике.

Количественно это различие можно оценить по относительным показателям. Наиболее известными в физическом воспитании и спорте относительными показателями выносливости являются: запас скорости, индекс выносливости, коэффициент выносливости.

Запас скорости (Н.Г.Озолин, 1959) определяется как разность между средним временем преодоления какого-либо короткого эталонного отрезка (например, 30, 60, 100 м в беге, 25 или 50 м плавании и т.д.) при прохождении всей дистанции и лучшим временем на этом отрезке.

Запас скорости Зс = tn - tk ,

где tn -- время преодоления эталонного отрезка;

tk -- лучшее время на этом отрезке.

Индекс выносливости (Т.Cureton, 1951) -- это разность между временем преодоления длинной дистанции и тем временем этой дистанции, которое показал бы испытуемый, если бы преодолел ее со скоростью, показываемой им на коротком (эталон ном) отрезке.

Индекс выносливости = t - tk * n ,

где t -- время преодоления какой-либо длинной дистанции;

tk -- время преодоления короткого (эталонного) отрезка;

n -- число таких отрезков, в сумме составляющих дистанцию.

Чем меньше индекс выносливости, тем выше уровень развития выносливости.

Коэффициент выносливости (Г. Лазарев, 1962) -- это отноше-ние времени преодоления всей дистанции ко времени преодоле-ния эталонного отрезка.

Коэффициент выносливости = t: tk ,

где t -- время преодоления всей дистанции;

tk -- лучшее время на эталонном отрезке.

Точно так же поступают и при измерении выносливости в упражнениях силового характера: полученные результаты (напри-мер, количество повторений теста с отягощением) нужно соот-носить с уровнем максимальной силы в этом движении.

В качестве показателей выносливости используются и биомеха-нические критерии, такие, например, как точность выполнения бросков в баскетболе, время опорных фаз в беге, колебания об-щего центра масс в движении и т.п. (М. А. Годик, 1988). Сравнива-ют их значения в начале, середине и конце упражнений. По вели-чине различий судят об уровне выносливости: чем меньше изме-няются биомеханические показатели в конце упражнения, тем выше уровень выносливости.

Использование тестов на выносливость позволя-ет дать количественную оценку способности сердеч-но-сосудистой и дыхательной систем выдерживать определенную физическую нагрузку или нормаль-но функционировать в экстремальных ситуациях.

Оценка выносливости по времени бега на 2000 и 3000 м

Оценка уровня развития выносливости учащихся 16-17 лет по 6-минутному бегу (по В.И. Ляху, 1998)

Пробегаемая дистанция, м

1 1 00 и ниже

1500 и выше

1300 и выше

Оценка выносливости по результатам 12-минутного теста в беге и плавании (по К. Куперу, 1987)

В Древнем Египте африканский страус считался символом истины и справедливости. Не случайно на изображениях суда над мертвыми его великолепные перья украшают головы божеств Маат и Шу -- «Властителей правды». Столь высокой чести страус удостоился потому, что в отличие от всех прочих птиц опахало его пера «справедливо» разделено стержнем на две абсолютно симметричные части. Но, по странной иронии судьбы, вряд ли найдется на Земле еще одна птица, к которой человек был бы столь несправедлив в своих суждениях и образ жизни которой на протяжении многих веков был бы окружен таким количеством сказок и небылиц.

Пасущиеся страусы поддерживают между собой постоянный визуальный контакт. Саванна полна неожиданностей, и птица, увлекшаяся кормежкой, рискует стать жертвой незаметно подкравшегося хищника -- льва, леопарда или гепарда. Поэтому во время пастьбы то один, то другой страус неожиданно вскидывает голову и секунду-другую внимательно озирает окрестности. И, несмотря на то что ни одна птица в стаде не берет на себя обязанностей часового, близко подобраться к кормящимся страусам чрезвычайно трудно. Вспугнутые страусы спасаются бегством. Известно, что по скорости и выносливости среди наземных позвоночных животных эти птицы занимают одно из первых мест в мире — они способны бежать со скоростью 50 км/ч около получаса. А вот на коротких дистанциях скорость их бега достигает порой и 70 км/ч, при этом шаги они делают длиной 3—5 м. Такой способностью страусы обязаны совершенному строению своих длинных мускулистых ног, оканчивающихся, как и у других признанных бегунов планеты — парнокопытных представителей отряда млекопитающих, только двумя мощными, уплощенными пальцами. Это сходство конечностей страусов с конечностями верблюдов получило свое отражение и в научном названии вида — Struthio camelus, что буквально означает «птица-верблюд». Короткие крылья этой птицы не способны ни на сантиметр оторвать страуса от земли, зато им отведена роль балансира при выполнении сложных скоростных маневров.

Однако все эти замечательные страусиные качества ничуть не впечатляли авторов средневековых трактатов о животных — «Бестиариев». По их мнению, расправляющий крылья, но неспособный к полету страус подобен ханжам и лицемерам, которые хоть и придают себе видимость святости, но из-за тяжелого веса своего земного богатства и забот не в состоянии устремиться в небесную высь. Что же касается широко распространенной байки о том, что испуганные страусы прячут голову в песок, то родилась она из-за особого маневра страусов во время бега.

Оказывается, спасающиеся от хищников птицы, особенно молодые особи и самки, иногда распластываются на земле и мгновенно исчезают из поля зрения преследователя. И происходит это благодаря защитной окраске их оперения.

Большую часть дня эти птицы проводят за кормежкой. И хотя страусы -- вегетарианцы, они тем не менее не упускают возможности пополнить свой рацион и разнообразной животной пищей. Длинная гибкая шея позволяет им с одинаковой легкостью щипать траву, выкапывать из земли корни и клубни растений, дотягиваться до семян на ветках высоких деревьев и кустарников и стремительным выпадом поражать крупных насекомых, ящериц и грызунов. Чтобы усвоить попавшую в желудок пищу, страусы постоянно заглатывают песок и камни, которые накапливаются в желудке и служат для измельчения твердых оболочек плодов, хитина и костей. Такая крайняя неразборчивость в еде и привычка заглатывать неудобоваримые предметы породила легенды о том, что страусы могут питаться камнями и даже проглоченные куски раскаленного железа не причиняют им никакого вреда, а, напротив, пройдя через кишечник, выходят наружу «еще более звенящими и сияющими, чем прежде»…

При наличии воды страусы охотно пьют и даже купаются, но и в этом вопросе они довольно неприхотливы, поскольку способны подолгу обходиться без нее, довольствуясь влагой, содержащейся в пище. Вместе с тем эти птицы обладают и специальными физиологическими приспособлениями для экономии влаги. В жару температура их тела повышается на 3—4°С, что выравнивает температурный градиент между телом и окружающей средой, способствуя тем самым уменьшению испарения. А холодными ночами аккумулированное за день тепло расходуется ими на обогрев. Кстати сказать, аналогичными «приспособлениями» наделены и «тезки страусов» -- верблюды, а длинные, оголенные шеи и ноги тех и других увеличивают теплоотдачу, предохраняя животных от излишнего перегрева.

С наступлением темноты страусы располагаются на ночлег. Спят они, сидя на земле и подогнув под туловище ноги. Они никогда не прячут голову под крыло, так что практически всю ночь шея птицы остается в вертикальном положении, и хотя глаза страуса при этом закрыты, сон его предельно чуток. Лишь несколько раз за ночь страус позволяет себе на несколько минут полностью расслабиться, опустив голову на землю и даже вытянув во всю длину ноги. Только в эти моменты он погружается в глубокий настоящий сон, полностью отключившись от внешнего мира и доверив свою жизнь своим сородичам, пребывающим в полудремотном состоянии.

С приближением сезона размножения размеренная, спокойная жизнь большого стада заканчивается. Голые шеи взрослых самцов окрашиваются в розовый или голубой цвет, и они, впав в состояние возбуждения, начинают выяснять отношения друг с другом, преследовать и стараться отбить от стада понравившихся им самок, самки же при этом всячески отгоняют от себя выросших птенцов. И через некоторое время стадо распадается на небольшие семейные группы, состоящие из взрослого самца и 4—6 самок.

Ученые, проводившие наблюдения за семейными группами страусов, заметили, что каждая птица в них занимает определенное социальное положение. Явление доминирования одних птиц над другими, впервые отмеченное среди обычных домашних кур и получившее название «порядок клевания», имеет место и в семейной жизни страусов. Самец и одна из самок, пользующаяся особым расположением самца, занимают в стаде доминирующее положение, и именно они решают, будет ли группа пастись или купаться в песке, отдыхать в тени или перемещаться на новое место кормежки, остальные же просто следуют их примеру. Как это свойственно многим особам высокого ранга, «любимая жена» нередко устраивает взбучку своим «товаркам», но зато именно она не расстается с самцом на протяжении многих лет, а в особо засушливые годы, когда кормовые условия не позволяют самцу собрать большой гарем, остается его единственной подругой.

Утром или во второй половине дня, когда спадает зной, самки, стараясь привлечь внимание самца, устраивают неистовые танцы, стараясь превзойти друг друга страстью и грацией, которые трудно заподозрить у этих массивных и неуклюжих на вид птиц. Самец, наметив избранницу, удаляется с ней в сторону, и птицы некоторое время пасутся рядом, тщательно копируя движения друг друга. Но вот возбужденный самец, распластав крылья, бросается перед самкой наземь. Ритмичные движения его черных крыльев и хвоста, отороченных пышным плюмажем из белых перьев, удивительно напоминают взмахи цыганских юбок. Сходство становится до забавного полным, когда страус, неистово трепеща всем телом, запрокидывает назад шею, касаясь затылком хвоста. Все это время восхищенная самка кружит вокруг него, едва не касаясь земли приспущенными крыльями и хвостом. Только после этого продолжительного и сложного ритуала ухаживания наступает его кульминационный момент - спаривание.

Страус-самец выбирает участок земли с хорошим обзором, в центре которого выкапывает в земле неглубокую яму диаметром около 3 м -- будущее гнездо. А затем регулярно патрулирует границы своих владений, площадь которых, в зависимости от кормовых условий и его физической формы, составляет от 2 до 15 кв. км. Заметив приближение птицы своего вида, страус принимает характерную позу угрозы: высоко поднимает голову, расправляет крылья, раздувает шею и оглашает окрестности глухим ревом, напоминающим львиный рык. Другие самцы обычно сразу понимают, что место уже занято и поспешно ретируются, хотя иногда между соперниками случаются и драки, во время которых птицы наносят друг другу удары клювом и ногами. Признавший свое поражение самец низко склоняет к земле голову, опускает крылья и хвост и в этой позе подчинения покидает поле сражения. Ну а если на гнездовую территорию самца забредет привлекательная самка, исход встречи будет целиком и полностью зависеть от ее готовности к спариванию.

В библейских текстах страус нередко приводится как пример крайне беспечного и нерадивого родителя, невнимательного и даже жестокого к своим детям, потому что он якобы откладывает яйца в песок, доверяя солнцу согревать их и забывая о том, что «нога может раздавить их, и полевой зверь может растоптать их». На самом деле это далеко не так.

Главная роль в инкубации яиц у страусов принадлежит самцу. Он насиживает яйца большую часть суток, включая ночь, и лишь днем его на несколько часов сменяет главная самка, которую трудно заметить на гнезде благодаря маскирующей окраске оперения. Другие самки наведываются к гнезду только для того, чтобы отложить очередное яйцо, и долго около него не задерживаются. Впрочем, порядки в страусином гареме не очень строгие, и самки вольны отложить яйцо в гнездо другого самца, если таковое окажется по соседству, а иногда, обойденные вниманием предводителя своего стада, спариваются с самцами, которые не имеют своих гнездовых участков и в одиночестве бродят по окрестностям.

Яйца страусов, хотя и невелики по сравнению с размером самой птицы, весят около 1,5 кг, а по объему в 20—25 раз превосходят куриные. В одном гнезде их может скопиться несколько десятков, но насиживающая птица, как ни распушает оперение, может прикрыть своим телом не больше 20—25 яиц. Страусу-самцу по большому счету безразлично, чьи яйца он насиживает, но вот главная самка, сменив его на гнезде, имеет на этот счет собственное мнение. По едва уловимым нюансам окраски, размера, формы и структуры поверхности она безошибочно распознает свои яйца и располагает их в центре гнезда, а яйца других самок решительно выталкивает на периферию. Если кладка небольшая, то все яйца будут благополучно насижены, в противном же случае птенцы вылупятся только из яиц главной самки и нескольких яиц, отложенных другими самками. Однажды в Кении была найдена кладка страусов, состоящая из 78 яиц, из которых насижено было только 21! Надо сказать, что подобная расточительность имеет глубокий биологический смысл: многочисленные хищники в первую очередь подбирают яйца, разбросанные вокруг гнезда, не трогая те, что лежат в его центре.

В течение 40—45 дней, пока длится насиживание, страусы охраняют гнездо и поддерживают в нем определенные температуру и влажность, прикрывая яйца ночью от холода, а днем - от испепеляющих лучей солнца. Уже за несколько дней до вылупления родители слышат доносящийся из яиц писк и ответными звуками подбадривают птенцов, стимулируя их попытки выбраться на свободу. Как и птенцы других птиц, страусята пробивают отверстие в скорлупе, используя как долото особый выступ на клюве - так называемый птенцовый зуб, который исчезает по мере взросления.

Но даже с помощью такого приспособления страусятам было бы непросто пробить скорлупу яйца, не уступающую по прочности фарфору, если бы не то обстоятельство, что стенка их «тюрьмы» значительно истончается за время развития зародыша, так как содержащийся в ней кальций расходуется на строительство скелета птенца. Едва вылупившиеся из яйца страусята покрыты курчавыми буроватыми волосками и имеют размер хорошо упитанной курицы.

Спустя 2—3 дня после вылупления выводок покидает гнездо и отправляется в долгое странствие по саванне. Несмотря на то что страусята с первых дней жизни способны кормиться самостоятельно, они на протяжении почти целого года нуждаются в опеке родителей, которые согревают их холодными ночами, защищают от солнца и дождя. При приближении опасности птенцы в сопровождении самки бросаются наутек или затаиваются в траве, а самец, нередко рискуя жизнью, пытается отвлечь хищников, притворяясь раненым и уводя их в другую сторону. Описаны достоверные случаи, когда защищающий выводок самец бросался в атаку и ударами своих мощных ног наносил смертельные ранения людям и даже львам. И тем не менее, несмотря на самоотверженную заботу родителей, большая часть страусят гибнет в первые месяцы жизни.

При встрече нескольких семей страусов с птенцами они иногда объединяются в одну большую стаю, но бывает и так, что после непродолжительного выяснения отношений одна пара страусов принимает на себя заботу о нескольких выводках. После чего можно встретить настоящие детские сады, состоящие из сотни разновозрастных птенцов в сопровождении только одной пары взрослых птиц.

Страусята растут очень быстро и уже через год почти не отличаются по росту от взрослых птиц, хотя и уступают им по весу. К этому моменту их детские перышки сменяются юношеским нарядом, очень похожим на наряд самок. И только на третьем году жизни, достигнув половой зрелости, самцы страусов одеваются пышным, шелковистым черно-белым оперением.

Красота страусиных перьев, которую первыми оценили жители Древнего Египта, едва не послужила причиной полного уничтожения этих птиц в природе. В XVIII—XIX веках повальная мода на веера, боа и шляпные украшения из страусиных перьев охватила буквально всю Европу, и миллионы самцов страусов были принесены в жертву этой моде. В результате был полностью истреблен единственный подвид африканских страусов, обитавший на Ближнем Востоке, чрезвычайно редки страусы стали и в северных и южных районах Африки. И только благодаря организации страусиных ферм, первая из которых была создана предприимчивым фермером в Капской провинции Южной Африки еще в 1838 году, их численность стала восстанавливаться.

В этой статье мы разберем 3 качества нашего организма: Силу, Выносливость и Скорость. Данная статья будет полезна не только тренерам и спортсменам, но и активно занимающимся людям, желающим увеличить свои знания о человеческом организме и его работе.

Сила

Мышечная сила – это способность человека преодолевать внешнее сопротивление или противодействовать ему за счет мышечных напряжений. Одним из наиболее существенных моментов, определяющих мышечную силу, является режим работы мышц. В процессе выполнения двигательных действий мышцы могут проявлять силу:


  • при уменьшении своей длины (преодолевающий, т.е. миометрический режим, например, жим штанги лежа на горизонтальной скамейке)
  • при ее удлинении (уступающий, т.е. полиометрический режим, например, приседание со штангой на плечах)
  • без изменения своей длины (статический, т.е. изометрический режим, например, удержание разведенных рук с гантелями в наклоне вперед)
  • при изменении и длины и напряжения мышц (смешанный, т.е. ауксотонический режим, например, подъем силой в упор на кольцах, опускание в упор руки в стороны («крест») и удержание в «кресте»)

Первые два режима характерны для динамической, третий – для статической, четвертый – для статодинамической работы мышц. В любом режиме работы мышц сила может быть проявлена медленно и быстро. Это характер их работы.


Различают следующие виды силовых способностей: собственно-силовые, и их соединение с другими физическими способностями (скоростно-силовые и силовая выносливость и силовая ловкость).

Собственно-силовые способности проявляются в условиях статического режима и медленных движений (например, при удержании предельных отягощений с максимальным напряжением мышц или при перемещении предметов большой массы). Для оценки степени развития собственно-силовых способностей различают абсолютную и относительную силу действия человека.

Абсолютная сила определяется максимальными показателями мышечных напряжений без учета массы тела человека, Относительная сила-отношением величины абсолютной силы к собственной массе тела, т.е. величиной силы. Приходящейся на 1 кг собственного веса тела.

Скоростно-силовые способности проявляются в двигательных действиях, в которых наряду со значительной силой мышц требуется и значительная быстрота движений (прыжки в длину и высоту с места и разбега, метания снарядов и т.п.). При этом чем выше внешнее отягощение, (например, при толкании ядра или выполнение рывка гири достаточно большого веса), тем большую роль играет силовой компонент, а при меньшем отягощении (например, при метании малого мяча) возрастает значимость скоростного компонента.

Важной разновидностью скоростно-силовых способностей является ВЗРЫВНАЯ СИЛА - способность проявлять большие величины силы в наименьшее время (например, при старте в спринтерском беге, в прыжках, метаниях и т.д.).

Силовая выносливость , как вид силовых способностей, проявляется в действиях, требующих продолжительного по времени и относительно высокого по уровню мышечного напряжения. В зависимости от режима работы мышц говорят о статической и динамической силовой выносливости. Статическая связана с удержанием рабочего напряжения в определенной позе, а динамическая - характерна для циклической и ациклической деятельности. Примером первой может быть длительное удержание гантелей на вытянутых руках и сохранение равновесия в положении «ласточка». В качестве примера второй – многочисленные отжимания в упоре лежа или приседания со штангой, вес которой равен 20-50% от максимальных силовых возможностей занимающегося и др.

Силовая ловкость – способность точно дифференцировать мышечные усилия различной величины в условиях непредвиденных ситуаций и смешанных режимов работы мышц. Силовая ловкость проявляется там, где есть сменный характер режима работы мышц, меняющиеся и непредвиденные ситуации деятельности (регби, борьба, хоккей).

Выносливость

Выносливость – способность человека противостоять физическому утомлению в процессе мышечной деятельности


Различают два вида выносливости: общая и специальная.

Общая выносливость - длительная работа организма всего организма (весь мышечный аппарат, внутренние органы и ЦНС) в умеренном темпе. Основным компонентом являются возможности аэробной системы организма. Общая выносливость является предпосылкой к развитию специальной выносливости.

Специальная выносливость - возможность длительной работы организма по отношению к определенной деятельности. Специальная выносливость характеризуется по 3 признакам: специального двигательного действия; выполнение задач в условиях специальной деятельности; взаимодействие с другими качествами (силовая, скоростная и координационная выносливость)

Специальная выносливость зависит от возможностей нервно-мышечного аппарата, быстроты расходования ресурсов внутримышечных источников энергии, от техники владения двигательными действиями и от уровня развития других двигательных способностей.

Скоростные способности

Скоростные способности – это комплекс функциональных свойств человека, обеспечивающих выполнение двигательных действий в минимальный для данных условий отрезок времени.


Различают элементарные и комплексные формы проявления скоростных способностей.

К элементарным формам относятся:

1. Скорость двигательной реакции;

2. Скорость одиночного движения;

3. Частота движений (количество движений в единицу времени).

К комплексным формам проявления скоростных способностей относятся:

1. Способность быстро набирать скорость на старте до максимально возможной (стартовый разгон в спринтерском беге, конькобежном спорте, рывки в футболе).

2. Способность к достижению высокого уровня дистанционной скорости – в беге, плавании и других циклических локомоциях.

3. Способность быстро переключаться с одних действий на другие и т.п.

Уровень развития скоростных качеств зависит от множества факторов: состояние ЦНС, силы мышц, морфологических особенностей мышечной ткани, питания мышц